631 research outputs found

    Saltmarsh resilience to periodic shifts in tidal channels

    Get PDF
    Resilience of coastal ecosystems to climate change is largely determined by the interaction between plants and the surrounding tidal environment. Research has tended to focus on processes operating at the local scale to explain resilience mechanisms, overlooking potentially important landscape-scale processes and patterns. We show from aerial images spanning 67 years across 3 estuaries that saltmarsh loss was compensated by expansion elsewhere in the estuary when tidal channels shifted position. Compensatory expansion rates were as high as 6 m/yr. This phenomenon of “geomorphic compensation” represents a hitherto overlooked large-scale self-organizing pattern that facilitates the long-term persistence of marshes in estuaries. The geomorphic compensation pattern likely also occurs in other hydrological systems including mangrove forests, and seagrass meadows, and river islands. Compensatory erosion-expansion patterns occurred at the same time as net marsh extent increased by between 120 and 235% across all three estuaries. Marsh expansion mostly occurred in the lower parts of each estuary, where channel migration and compensatory expansion was less evident. Patterns of geomorphic compensation therefore appear to operate at discrete spatio-temporal scales, nested within a hierarchy of coastal morphodynamic processes that govern longer-term patterns of either net marsh gain or loss. Coastal ecosystem resilience can therefore only be fully appreciated when examining erosion and expansion patterns at both local and landscape scales. The intrinsic dynamics of marshes described here have important implications for the long-term delivery of ecosystem services

    Opposing indirect effects of domestic herbivores on saltmarsh erosion

    Get PDF
    Herbivores can sometimes influence the geomorphology of landscapes, particularly in systems dominated by hydrology. Salt marshes deliver globally valuable benefits, including coastal protection, yet they sometimes rapidly erode. Triggers for erosion are often unknown, but livestock grazing is a suspected cause in many regions of the world where agricultural use of saltmarshes is pervasive. To understand the influence of grazing on saltmarsh erosion, we sampled the plant community, soil chemistry and soil mechanical properties along 2–5 creeks in grazed and ungrazed marshes. Erosion was quantified as: (1) the rates of erosion of extracted soil–plant cores in a hydrological flume and (2) the number of erosional break-offs (‘slump blocks’) per creek. We found that domestic herbivores influenced saltmarsh geomorphology via two indirect and opposing pathways: one involving soil mechanical properties and the other mediated by plant traits and bare soil cover, all within a soil physico-chemical environment. The net effect of grazing results in a reduction in saltmarsh lateral erodibility and thus an increase in marsh resilience. Our results highlight the role of herbivores not only as controllers of the flow of energy and materials through the trophic web, but also as modifiers of the abiotic environment. Managers and scientists must remain vigilant to both the obvious direct and the more nuanced indirect pathways, which can influence grazed ecosystems. This study calls for a closer look to the biological side of the equation when assessing biogeomorphic feedbacks and plant–soil–animal interactions

    Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna

    Get PDF
    Snow conditions are important drivers of the distribution and phenology of Arctic flora and fauna, but the extent and effects of local variation in snowmelt are still inadequately studied. We analyze snowmelt patterns within the Zackenberg valley in northeast Greenland. Drawing on landscape-level snowmelt dates and meteorological data from a central climate station, we model snowmelt trends during 1998-2014. We then use time-lapse photographs to examine consistency in spatiotemporal snowmelt patterns during 2006-2014. Finally, we use monitoring data on arthropods and plants for 1998-2014 to investigate how snowmelt date affects the phenology of Arctic organisms. Despite large interannual variation in snowmelt timing, we find consistency in the relative order of snowmelt among sites within the landscape. With a slight overall advancement in snowmelt during the study period, early melting locations have advanced more than late-melting ones. Individual organism groups differ greatly in how their phenology shifts with snowmelt, with much variance attributable to variation in life history and diet. Overall, we note that local variation in snowmelt patterns may drive important ecological processes, and that more attention should be paid to variability within landscapes. Areas optimal for a given taxon vary between years, thereby creating spatial structure in a seemingly uniform landscape.Peer reviewe
    corecore